
186

Trimaran Tutorial

The
HPL-PD Simulator and

Performance Monitoring
Environment



187

Trimaran Tutorial

User View of the Simulator

• To the user, the simulator is simply another phase of the

compilation/execution process.

• Transparent to the user, Makefiles guide the

– Configuration of the simulator using MDES

– Generation of “executable” code from the Rebel output of the back end.

– Creation of interface for “foreign calls”

• to C routines provided by the user or as part of a standard library.

• A GUI is provided to extract and analyze the execution results of the

simulator.

Front End Back End Simulator

C program

Execution
Statistics



188

Trimaran Tutorial

Execution Results

• During execution, the simulator produces raw data,
namely a trace specifying
– Control flow execution

• gives the order of control-block execution

– Memory addresses referenced

– Guarded predicate values
• whether an operation within a HPL-PD instruction was disabled by

predication.

• A trace-driven profiler tool is run after execution.
– Reads the trace, and Rebel file(s), and extracts the desired

information.
– Emits a detailed statistics / profile information file.



189

Trimaran Tutorial

Statistics

• List of items generated by the Trace-Driven Profiler
– IPC (number of HPL-PD operations / clock cycle).

– Memory address usage frequencies.

– Control block visit frequencies.

– Resource utilization.
• Register Usage frequencies.

• Functional Unit utilization.

• Memory(Stack / Heap) utilization.

– Effectiveness of guarded predicates.

– Register allocation overhead.



190

Trimaran Tutorial

Viewing execution statistics using the GUI



191

Trimaran Tutorial

Viewing execution statistics using the GUI



192

Trimaran Tutorial

HPL-PD and Native Code Interaction

• Perhaps the most interesting aspect of the simulator is
the ability to combine
– HPL-PD code (as generated by Trimaran) with

– Native machine code (generated from C by a native code
compiler such as GCC)

within a single simulation.

• The native code may come from a C library or be
compiled from user-supplied C code.

• Run-time execution statistics are generated for the HPL-
PD code, while it is executing.
– No statistics are generated for native code.



193

Trimaran Tutorial

HPL-PD and Native Code (cont)

Why would you want to mix code compiled for HPL-PD by
Trimaran with ordinary compiled C code?

– To utilize C libraries, without having to recompile them with
Trimaran every time the machine configuration changes.

• Generally not interested in run-time statistics about printf, etc.

– In a large program, you might be interested in obtaining run-time
statistics (branch frequencies, etc) about a small part of the
program.

• Most of the program can be compiled using GCC. Only the parts
whose HPL-PD execution behavior is of interest need be compiled
by Trimaran.

• Simulated execution runs much slower than native code, but you
don’t pay the simulation overhead on most of the program.



194

Trimaran Tutorial

Summary

• Trimaran provides detailed execution statistics
– Viewed graphically

– Fed back into the compiler

• The simulator is integrated seamlessly into the rest of
the system.
– Controlled via the GUI

• Simulation overhead is paid only on those portions of the
program that are being instrumented.


