186

The
HPL-PD Simulator and
Performance Monitoring

Environment

Trimaran Tutorial



187

User View of the Simulator

 To the user, the simulator is simply another phase of the

compilation/execution process. Execution
Statistics

C program
- - D - D

e Transparent to the user, Makefiles guide the

— Configuration of the simulator using MDES
— Generation of “executable” code from the Rebel output of the back end.
— Creation of interface for “foreign calls”

» to C routines provided by the user or as part of a standard library.

« A GUI is provided to extract and analyze the execution results of the
simulator.

Trimaran Tutorial



188

Execution Results

e During execution, the simulator produces raw data,
namely a trace specifying

— Control flow execution
 gives the order of control-block execution

— Memory addresses referenced

— Guarded predicate values

» whether an operation within a HPL-PD instruction was disabled by
predication.

« A trace-driven profiler tool is run after execution.

— Reads the trace, and Rebel file(s), and extracts the desired
information.

— Emits a detailed statistics / profile information file.

Trimaran Tutorial



o List of items generated by the Trace-Driven Profiler

Trimaran Tutorial

Statistics

IPC (number of HPL-PD operations / clock cycle).
Memory address usage frequencies.
Control block visit frequencies.

Resource utilization.
* Register Usage frequencies.
» Functional Unit utilization.
 Memory(Stack / Heap) utilization.
Effectiveness of guarded predicates.

Register allocation overhead.

189




Trimaran Tutorial

Viewing execution statistics using the GUI

v Compare Compilations — sample {5) 1

Select a statistic:

Dynamic_total_compute_cycles

|

iy

V& 1=

std.grep.1

std.grep.2
I stdgrep.3
std.grep.4
| stdgrep.s
std.grep.6

1167005

998306

631543

_execute

190




191

r‘LI Instruction Histogram — sams_newtest : std.nbradar.1 (6}

branch: 205250 load: 409610 branch: 303023 load: 94
store: 409610 ialu: 16413940 store: 474730 ialu: 24¢

phr: 205250 phr: 303029

[MI
A

oK

Trimaran Tutorial



192

HPL-PD and Native Code Interaction

 Perhaps the most interesting aspect of the simulator is
the ability to combine

— HPL-PD code (as generated by Trimaran) with

— Native machine code (generated from C by a native code
compiler such as GCC)

within a single simulation.

 The native code may come from a C library or be
compiled from user-supplied C code.

 Run-time execution statistics are generated for the HPL-
PD code, while it is executing.

— No statistics are generated for native code.

Trimaran Tutorial



193

HPL-PD and Native Code (cont)

Why would you want to mix code compiled for HPL-PD by
Trimaran with ordinary compiled C code?
— To utilize C libraries, without having to recompile them with
Trimaran every time the machine configuration changes.
» Generally not interested in run-time statistics about printf, etc.
— In alarge program, you might be interested in obtaining run-time

statistics (branch frequencies, etc) about a small part of the
program.

» Most of the program can be compiled using GCC. Only the parts
whose HPL-PD execution behavior is of interest need be compiled
by Trimaran.

« Simulated execution runs much slower than native code, but you
don’t pay the simulation overhead on most of the program.

Trimaran Tutorial



194

Summary

« Trimaran provides detailed execution statistics
— Viewed graphically
— Fed back into the compiler
 The simulator is integrated seamlessly into the rest of
the system.
— Controlled via the GUI

e Simulation overhead is paid only on those portions of the
program that are being instrumented.

Trimaran Tutorial



