
166

Trimaran Tutorial

ELCOR ModulesELCOR Modules

Trimaran Tutorial

167

Elcor Functional Overview

• Elementary data structures
– Container classes

– Data structures for
compiler algorithms

• Intermediate
Representation data
structures(*)

• I/O modules
– Rebel reader/writer
– Lcode reader/writer

• Mdes interface(*)

• Analysis modules
– Control dependence

– Data flow

• Transformation and
optimization modules

• Scheduling modules
– Acyclic schedulers
– Loop schedulers

• Rotating register allocator

• Static register allocator(*)

 by ReaCT-ILP

Elcor is a collection of compiler components and scripts that
analyze and transform Rebel

(*)Covered separately

Trimaran Tutorial

168

Basic Elcor Data Structures

• Container classes
– Lists, sets, hash tables, vectors, maps etc.

• Data structures for compiler algorithms
– Bitvector

– Matrices,
– Solving shortest/longest path problems

– Directed graphs
– Topological sort
– Depth-first/breadth-first graph traversals

Trimaran Tutorial

169

Control Flow Analysis

• Dominator analysis
• Control Dependence Analysis
• Loop detection
• Induction variable detection

Trimaran Tutorial

170

Control Flow Transformations

• Loop region construction
– Constructs a cyclic region which can be modulo scheduled

– Single back edge
– Counted do loop

• Structural region formation
– Identifies acyclic subgraphs of CFG that are single entry

and multiple exit.

• Branch normalization/denormalization
– Constructs a memory layout independent form of CFG that

can be transformed easily.

Trimaran Tutorial

171

Control Flow Transformations

• Tail duplication:
Useful for constructing single entry multiple exit regions

A

B C

D

A

B C

D D’

Trimaran Tutorial

172

Control Flow Transformations

• If-conversion of single entry multiple exit basic block
regions

Supports if-conversion with or without
fully resolved predicates (FRP’s)

Trimaran Tutorial

173

Data-flow analysis

• Live variable analysis
– Live variable information is annotated on the IR

Can also compute
– Up exposed defined variables
– Down exposed used variables
– Down exposed defined variables

• Reaching definitions analysis
– A data structure for def-use chains is annotated on the IR

• Available expression analysis
– Queries for expression availability is provided at any point on the

control-flow graph

These analysis can be performed on any region

• Predicate Query System(s) for hyperblocks
– One-bit representation of expressions (TRUE or FALSE)
– Single symbol representation (symbols from program text)

Trimaran Tutorial

174

Data-flow analysis architecture

Uses a CFG consisting of basic-blocks and
hyperblocks. Such a cut has to exist in the region
hierarchy

Region based analysis has three steps
• Transfer functions are constructed for each entry-exit pair on a

CFG node
– Transfer functions are constructed using local predicate

relationships. The transfer functions themselves are conventional
bitvectors.

– Transfer function construction handles REMAP operations

• Global iterative solver is conventional
– Solves data-flow equations at basic/hyperblock entry exit points.

• Local analysis is used to determine data-flow equation
solutions at points within a block using global solver results
– Local analysis is predicate and REMAP aware

Trimaran Tutorial

175

Elcor Optimization Architecture

Elcor IR

Analysis X
Predicate

Query
System

Transformation

PQS Interface

Interface to
results of X

Interface to
results of Y

Analysis Y

Trimaran Tutorial

176

Optimizations

• Predicate speculation
• Dead code elimination
• Global copy propagation (forward)
• Local copy propagation (forward and backward)
• Global common sub-expression elimination
• Loop-invariant code removal
• Global register renaming

– Including web splitting

Trimaran Tutorial

177Region Based Dead Code
Elimination

Elcor IR

Live
variable
analysis

Predicate
Query

System

Dead code
elimination

PQS Interface

Liveness info
at region boundaries

Def-use chains

Reaching
definitions
analysis

Trimaran Tutorial

178Region Based Predicated Dead
Code Elimination

Assume:

• Region A is a procedure and B
and C are regions in A

• x is live at region B exit on
taken path only

1) Op1 is always dead

2) Op2 is dead if branch is taken
implies Op3 executes

Op1 x := ... if p
Op2 x := ... if TRUE
Op3 x := ... if q

branch L2 if cond

region B

L2:
 y := x if TRUE

region C

region A

Op1 x := ... if p
Op2 x := ... if TRUE
Op3 x := ... if q

branch L2 if cond
(uses x if taken)

region B

Trimaran Tutorial

179

Edge Drawing

Edge drawing modules draw dependence edges
threaded through control-flow within a region
If the region is cyclic, edge-drawn graph may
contain dependence cycles
– Register name changes are tracked through REMAP

operations in drawing edges

Edge drawing inserts register flow/anti/output
dependence, memory dependence, and control
dependence edges.

• Dependence graph is used by scheduling modules
• Dependence graph is used to compute dependence

height (to guide optimizations/transformations)

Trimaran Tutorial

180Loop Scheduling And Register
Allocation

• Modulo scheduler
– Iterative modulo scheduler which generates kernel-only

code for counted loops

• Stage scheduler
– A post-pass to the modulo scheduler to decrease register

pressure

• Rotating register allocator
– Allocates EVR’s within the kernel only code to rotating

registers.

– Does not allocate static registers

Trimaran Tutorial

181

Acyclic Scheduling

Schedulers for superblocks or hyperblocks
• Cycle scheduler

– Generates a schedule by building instructions for each
issue cycle in order

– Supports cache miss sensitive scheduling if cache miss
profile information is available

– Supports use-of data speculative loads (LDS/LDV pair) if
memory dependence profile information is available

• Backtracking scheduler
– Limited backtracking, only for branches with delay slots

and operations displaced by branches

– Unlimited backtracking

• Meld scheduler
– Propagates latency constraints across region boundaries

Trimaran Tutorial

182

Execution Paths

It is possible to craft many execution scripts
depending on the state of the input and desired
output.

A simple path for executing a program would be:

Pre-pass
Scheduling

Register
Allocation

Post-pass
Scheduling

Elcor
Basic-block

Code

Trimaran Tutorial

183

Execution Paths (cont.)

A more complex path may be:

Loop region
formation

If-conversion
of loops

Modulo
scheduling

Elcor
Basic-block

Code

Pre-pass
scheduling

Register
allocation

Post-pass
scheduling

Rotating register allocation

Trimaran Tutorial

184

Instrumentation/Visualization

• Control flow graph visualization
using Dot

• Dependence graph
visualization using Dot

• Built in timer for measuring time
spent in large modules.

• Compile time statistics on
– Schedule length of regions

– Opcode usage

– Program and per procedure
estimates of

– Execution time
– Number of operations

BB 1

BB 2

1

BB 5

BB 3

2

BB 9

1

BB 4

1

BB 7

1

BB 8

1

1

0

1

BB 12

2

BB 13

0

1

1 1

Trimaran Tutorial

185

Summary

Elcor is a collection of software components that
are designed to be flexible, modular, and interface
with each other.

These components:
• Are predicate and REMAP aware.
• Region based.
• Perform ILP optimizations/transformations.
• Provide common program analysis.
• Provide conventional optimizations.
• Can be used as building blocks for exploring new

ILP compilation techniques.

