
1

The MDES User Manual

Contents

1 Introduction 2

2 MDES Related Files in Trimaran 3

3 Structure of the Machine Description File 5

4 Modifying and Compiling HMDES Files 7
4.1 An Example …………….………………………………………………… 7

5 External Interface to MDES 8
5.1 mQS : mdes Query System ……………………………………………… 8
5.2 Using mQS : Example 1 ………………………………………………… 8

 5.3 Using mQS : Example 2 ……………………………………………….… 9

6 Limitations/Bugs 11

7 Further Reading 11

2

1 Introduction

The machine description model (MDES) in TRIMARAN allows the user to develop a machine
description for the HPL-PD family of processors in a high-level language, which is then
translated into a low-level representation for efficient use by the compiler. The high-level
language allows the specification of detailed execution constraints in an easy-to-understand,
maintainable, and retargetable manner. The low-level representation is designed to allow the
compiler to check execution constraints with high space/time efficiency. The purpose of this
section of the TRIMARAN manual is to provide the user with an understanding of the role of
MDES in TRIMARAN with an emphasis on creating/modifying/using machine descriptions. We
shall also describe the compiler’s interface to the machine description modules and, briefly, the
data-structures internal to the compiler corresponding to the machine descriptions. Where
necessary, explanations are illustrated through examples.

Figure 1: MDES in TRIMARAN

The MDES infrastructure in TRIMARAN is shown in Figure 1. The target (HPL-PD processor)
is described in a general relational database description language called MD language [3].
Though the MD language allows for a variety of representations, the HPL-PD machine
descriptions are restricted to follow a particular format called HMDES (High-level Machine
Description) version 2 [2]. After the macro processing and compilation of the high-level
description (P.hmdes2 in Figure 1), the corresponding low-level specification, expressed in
LMDES version 2(P.lmdes2 in Figure 1), is loaded within the compiler using the customize
module that reads the textual LMDES specification and builds the internal data-structures of the
MDES database. The information contained within the machine description database is made
available to various modules of the TRIMARAN infrastructure through a query interface called
mQS. Subsequent sections of this manual describe these steps in greater detail.

hc
Pre-processor Optimizer &

Translator

hmdes2 Hmdes2pp Lmdes

Customize

mQS

RU Map

Mdes
DB

scheduler

register
allocation

Compiler

mQS
interface

mGen

 Simulator

3

2 MDES Related Files in TRIMARAN

The standard organization of the mdes module related files within the TRIMARAN distribution
is shown in Figure 2.

Figure 2: MDES Related Files in TRIMARAN

The Machine Description File
Each instance of HPL-PD processor is described using four files in textual format. In Figure 2,
these four files corresponding to an example HPL-PD processor (P) are the top-level file
P.hmdes2 and the three files #included by it : structure_pristine.hmdes2,
hpl_pd_pristine.hmdes2, and hpl_pd_elcor.hmdes2. Currently, the user can vary the machine
by modifying parameters within the top-level file (here P.hmdes2) and the rest of the compiler
modules will track those changes.

Programs that Process Machine Description Files
As mentioned in Section 1, the high-level machine description files are for the convenience of the
user. The compiler itself understands and interprets a low-level description. The
scripts/programs which are used to convert the high-level descriptions (*.hmdes2) to low-level
descriptions (*.lmdes2) are listed below. Please refer to Figure 2 for the location of these files in
the TRIMARAN distribution.

1. hc : The main script to convert *.hmdes2 to *.lmdes2.

2. hmdesc : This script does the same job as hc, however, the generated *.lmdes2 file is
 customized for the IMPACT front-end’s interface to the MDES module.

Trimaran

impact

elcor

lib

src

scripts

machine

hp_c libmspec.a

md_compiler/
md_preprocessor/

hc
hmdesc

lib

src

mdes

Mdes/

intf.[cpp|h]
mdes.[cpp|h]
mdes_reader.[cpp|h]

libmdes.a

P.hmdes2 structure_pristine.hmdes2
 hpl_pd_pristine.hmdes2

hpl_pd_elcor.hmdes2

4

3. md_processor, md_compiler, lmdes2_customizer : These are the main binaries
 which actually do the pre-processing and compilation of MDES files are called by the
 hc, hmdesc scripts.

Files Specifying the Compiler’s Interface to MDES
In the current vision of TRIMARAN, the front-end (IMPACT) and the back-end (ELCOR) source
files containing the interface functions to the MDES module are distinct. These files are likely to
be unified in future releases of TRIMARAN.

1. inft.* : The mQS interface functions are defined here.
2. Impact Interface Files : To be added later.

MDES Module Sources/Libraries

• Elcor Side MDES Sources

1. mdes.* The internal data-structures created (MDES database) are defined here.
2. mdes_reader.cpp The functions that load the *.lmdes2 file are defined here.
3. libmdes.a This library includes the object files of the ELCOR side of the MDES

source modules.

• Impact Side MDES Sources

1. TRIMARAN_HOME/impact/src/machine This directory contains all the
sources related to the *.hmdes2 to *.lmdes2 conversion.

2. libmspec.a This library contains the object modules for the impact related
 MDES files.

5

3 Structure of the Machine Description File

Here we discuss the structure of the .hmdes2 files only. As mentioned before, four files describe
a particular instance of a HPL-PD processor (say P). The top-level file (P.hmdes2) includes the
other three (structure_pristine.hmdes2, hpl_pd_pristine.hmdes2 and hpl_pd_elcor.hmdes2).
The union of the information contained in these files is illustrated in Figure 3. The machine
structure is described as a hierarchy of types called sections. The top-level section called
Elcor_Operation defines a list of generic operations which are described in terns of Operation
and Elcor_Operation_Flag sections. Each Operation in turn is composed of a list of a list of
Scheduling_Aleternatives. Each Scheduling_Alternative section contains pointers to the actual
architectural opcode (Operation_Format), the resource usage pattern for that opcode
(Reservation_Table) and the latency characteristics (Operation_Latency). Further details about
the structure of the machine description can be found in the references (please see Section 7).
Brief notes on the contents of these files are given below.

E lc o r_ O p e ra tio n

E lc o r_ O p e ra tio n _ F la gO p e ra tio n

S c h e d u lin g _ A lte rn a tive

O p e ra tio n _ F o rm a t R e s e rva tio n _ T a b le O p e ra tio n _ L a te n cy

O p e ra n d _ L a te n c yR e s o u rc e _ U s a g e

R e s o u rc e

F ie ld _ T y p e

R e g is te r_ F ile

R e g is te r

Figure 3: Structure of the Information Contained in a HMDES File

1. P.hmdes2 : This file list various parameters:

• Register file sizes.
• Number of different types of functional units.
• Latency parameters for different operation groups.

 Portions of a sample file are shown in Figure 4(a).

2. structure_pristine.hmdes2 : The definitions of all types (sections) (Figure 4(b)) are listed in
 this file.

6

3. hpl_pd_pristine.hmdes2 : This file describes the current version of HPL-PD processor by
instantiating most of the sections ("filling the schema") defined in structure_pristine.hmdes2.
Portions of a sample file are shown in Figure 4(c).

4. hpl_pd_elcor.hmdes2 : The sections Elcor_Operation and Elcor_Operation_Flag and a few
 others which contain ELCOR specific information also and hence described in a separate file
 (Figure 3(d)).

Figure 4: An HMDES File

$def !gpr_static_size 64
$def !gpr_rotating_size 64
$def !fpr_static_size 64
$def !fpr_rotating_size 64

$def !integer_units 1
$def !float_units 1
$def !memory_units 1
$def !branch_units 1

$def !int_alu_sample 0
$def !int_alu_exception 0
$def !int_alu_latency 1
$def !int_alu_reserve 1

$include "structure_pristine.hmdes2"
$include "hpl_pd_pristine.hmdes2"
$include "hpl_pd_elcor.hmdes2"

CREATE SECTION Register
 OPTIONAL overlaps
(LINK(Register)*);
{}

CREATE SECTION Register_File
REQUIRED width(INT);
OPTIONAL static(LINK(Register)*);
OPTIONAL rotating(LINK(Register)*);
OPTIONAL speculative(INT);
OPTIONAL virtual(STRING);
OPTIONAL intlist(INT*);
OPTIONAL intrange(INT*);
OPTIONAL doublelist(DOUBLE*);
{}

SECTION Register {
 $for (N in $0..(gpr_static_size-1)) { "GPR${N}"(); }
 $for (N in $0..(gpr_rotating_size-1)) { "GPR[${N}]"(); } ...}
SECTION Operand_Latency {
 time_int_alu_exception(time(int_alu_exception)); ...}

SECTION Elcor_Operation_Flag { .. }
SECTION Operation_Format { .. }
SECTION Scheduling_Alternative { .. }
SECTION Elcor_Operation { .. }

(a)

(b)

(c)

(d)

7

4 Modifying and Compiling HMDES Files

Modifying machine descriptions : The machine description aspects which can be varied without
requiring any change to the compiler or other modules of TRIMARAN are those described in the
top-level machine description file1. Currently, the machine attributes that can be changed are

1. Register file sizes ({gpr|fpr|pr|btr}-{static|rotating|_size).
2. Number of functional units ({integers|float|memory|branch}_units).
3. Operation latency values (for example int_alu_sample, etc.).

Compiling machine descriptions : The only command to use is hc. The format usage for the
command is :

hc top-level-file.hmdes2

4.1 An Example

A typical usage is shown in Example 1. Note that the same can be accomplished through the
TRIMARAN GUI. Please refer to the GUI documentation for details.

Example 1 Modifying and Compiling HMDES Files

 > cd $MY_MDES_FILES_DIR
 > ls
 -rw-r-r-1 ilpdev 12917 Apr 1 18:29 hpl_pd_elcor.hmdes2
 -rw-r-r-1 ilpdev 39621 Apr 1 19:14 hpl_pd_pristine.hmdes2
 -rw-r-r-1 ilpdev 6101 Mar 2 18:27 structure_pristine.hmdes2
 -rw-r-r-1 ilpdev 2556 Mar 31 1997 P.hmdes2

 ;; Edit some of the allowed parameters (listed above). For example
 ;; one could change the number of integer_units,
 memory_access_latency etc.
 > emacs P.hmdes2
 ;; compile the *P.hmdes2 file
 > hc P.hmdes2
 > ls

 -rw-r-r-1 ilpdev 12917 Apr 1 18:29 hpl_pd_elcor.hmdes2
 -rw-r-r-1 ilpdev 39621 Apr 1 19:14 hpl_pd_pristine.hmdes2
 -rw-r-r-1 ilpdev 6101 Mar 2 18:27 structure_pristine.hmdes2
 -rw-r-r-1 ilpdev 2630 Apr 1 20:24 1997 P.hmdes2
 -rw-r-r-1 ilpdev 214411 Apr 1 20:27 1997 P.lmdes2

 ;; Notice that the P.lmdes2 file has been created as a result of
 ;; compiling P.hmdes2
 ;; To use the new machine description file update the lMDES_file_name
 ;; parameter. This parameter is defined in the IO_DEFAULTS parameter
 ;;file

 > emacs $ELCOR_HOME/elcor/parms/IO_DEFAULTS

 ;; run a compilation

1 A section of this top-level hmdes2 file is shown in Figure3(a)

8

5 External Interface to MDES

5.1 mQS : mdes Query System

Information contained within the MDES database should be accessed through a query interface
called the mQS. The files pertinent to this interface are mentioned in Section2. The mQS
interface is composed of four sets of queries:

1. Opcode, Operand parameter queries.
2. Register parameter queries.
3. Resource Usage (RU) manages queries.
4. Resource Minimum Schedule Length (RMSL) manager queries.

These queries along with brief descriptions are listed in Table 1. Please refer to the source files in
the distribution for exact declarations.

5.2 Using mQS : Example 1

Calculate Res MII Using RMSL Queries : Given an if-converted, back-substituted, load-store
eliminated graph of intermediate code (ELCOR IR), the given function in Example 2 Computes
an integer value representing the maximum initiation interval (II) possible, given the resource
bounds. It proceeds by calculating the maximum schedule length of the operations performed on
each class of resource. This estimate is used in modulo-scheduling module of the Elcor ILP-
optimizer2. This portion of the source code is from $ELCOR_HOME/src/ModuloScheduler.cpp.

Example 2 Calculate ResMII Using RMSL Queries

int ModuloScheduler :: calculate_ResMII(){
char iopat [MAXIOPATLEN];
Real_op_filter real_op_filter;
RMSL_alloc();
for (Region_all_ops opi(kernel, &real_op_filter); opi != 0; oopi++) {
 Op*op = *opi;
 if (el_opcode_to_string_map.is_bound(oop->opcode())) {

 op->build_io_pat(iopat);
 RMSL_nextop(el_opcode_to_string_map.value(op->opcode()), iopat);

 }
}
int resmii = RMSL_value();
RMSL_dealloc();
return resmii;

}

2 For details about the algorithm, please see [6]

9

5.3 Using mQS : Example 2

Trimaran Simulator : The simulator3 obtains the target (HPL-PD) processor register-file sizes
using a sequence of calls as shown in Example 3. This code is obtained from
simu_el_processor.cpp file of the simulator sources.

Example 3 mQS Queries in the Simulator

char *file;
file = regfile_to_char(GPR);
regs.gpr_stat_size = MDES_reg_static_size(file);
file = regfile_to_char(FPR);
regs.fpr_stat_size = MDES_reg_static_size(file);

3 Information regarding the HPL-PD simulator is given in a separate chapter of the TRIMARAN documentation

10

Table 1 mQS : The MDES Query System

1. Opcode and Operand Parameters

MDES_src_num(opcode) ; return number of input operands
MDES_dest_num(opcode) ; return number of output operands
MDES_is_predicated(opcode) ;
MDES_has_speculative_version(opcode) ;
MDES_flow_time_io(opcode,iodesc,port) ; These functions are used to obtain the latency parameters
MDES_anti_time_io(opcode,iodesc,port) ; of any given operand. The exception time applies to entire
MDES_branch_latency(opcode) ; operation rather than to a particular operand. For an opcode
MDES_priority(opcode) ; qualified opn, the numbers are exact.

2. Register Parameters

MDES_reg_names(list®names) ; number of distinct compiler register sets supported
MDES_reg_overlaps(regname1, regname2) ; there is a structural overlap between the files?
MDES_reg_static_size(regfile) ; number of static registers in the register file
MDES_regrotating_size(regfile) ; number of rotating registers in the register file
MDES_reg_width(regfile) ; register width in bits
MDES_supports_rot_reg(regfile) ; register file supports rotating registers?
MDES_reg_has_speculative_bit(regfile) ; register file supports speculative registers?
MDES_reg_is_allocatable(regfile) ; literal registers are not allocatable

3. Resource Usage Manager Queries

RU_alloc_map(max_length) ; These functions alloc, delete, print and init the interal resource
RU_delete_map() ; usage map as requested by scheduler. Initialization specifies
RU_print_map(stream) ; whether the map is to be used for modul-scheduling or not
RU_init_map(is_modulo, ii) ; ii is the initiation interval (integer)

RU_get_next_nonconfl_alt(opcode,iodesc,time); Cycle through next available non-conflicting alternative
RU_place_alt(opcode,time) ; commit the chosen alternative
RU_remove_alt(opcode, time) ; unschedule the placed instruction
RU_ge_conflicting_ops() ; If the scheduler decides to unschedule, this fn gives all the

; scheduled opns that conflict with any alternative of the
; current access equivalent opn set if scheduled at the current cycle

4. RMSL Queries

RMSL_alloc() ; These functions allocate, deallocate and initialize
RMSL_dealloc() ; the internal resource counters for computing RMSL
RMSL_init() ;

RMSL_nextop(opcode, iodesc) ; Accumulates the resource counts for the best alternative
RMSL_value() ; returns the currently accumulated RMSL

11

6 Limitations/Bugs

1. None.

7. Further Reading

Some references for further details:

• Basic philosophy behind the design of MDES was proposed in the MICRO-29 paper [4].
• MD language details and the external file format of MDES files can be found in

Gyllenhaal’s Master’s Thesis[3]. A complete specification of the HMDES format for
representing HPL-PD and other multi-issue processors can be found in [2].

• The structure of the machine description is motivated by a machine description driven
compilation methodology for VLIW processors advocated in [5, 7].

• The TRIMARAN tutorial [1] contains two thirty minutes slide presentations describing
the MDES infrastructure as implemented in TRIMARAN.

8. References

[1] ReaCT-ILP Group. Trimaran tutorial. December 1997.

[2] J.C. Gyllenhaal, W.W. Hwu, and B.R. Rau. Hmdes version 2.0 specification. Technical
 Report IMPACT-96-3, Urbana Champagne, March 1996.

[3] John c. Gyllenhaal. Machine description… Master's thesis, University of Illinois, Urbana
 Champagnem, December 1993.

[4] John C. Gyllenhaal, Wen Mei W. Hwu, and B. Ramakrishna Rau. Optimization of machine
 descriptions for efficient use. In Proceedings of the 29th Annual International Symposium on
 Microarchtecture, pages 349-358, Paris, France, December 2-4, 1996. IEEE Computer Society
 TC-MICRO and ACM SIGMICRO.

[5] S. Aditya, V. Kathail and B. R. Rau. Elcor's Machine Description System: Version 3.0. HPL
Technical Report HPL-98-128. Hewlett-Packard Laboratories, July 1998.

[6] B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for software pipelining
 loops. In Proceedings of the 27th Annual International Symposium on Microarchitecture,
 pages 63-74, San Jose, California, November 30-December 2, 1994. ACM SIGMICRO and
 IEEE Computer Society TC-MICRO.

[7] B. R. Rau, V. Kathail and S. Aditya. Machine-Description Driven Compilers for
VLIW Processors. HPL Technical Report HPL-98-40. Hewlett-Packard Laboratories,
March 1998.

